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Abstract  Techniques for computation on generalized diagrams are defined for Artificial Intelligence. Model diagrams categorization and applications to charcaterization and plan computation are presented.  Categorical models are constructed from the syntax of logical theories and model diagrams. Further epistemics for computation are defined by introducing der Vielliecht Vorhandenen, and defining an epistemic for computational illusion and the consequences to object characterization. A formulation of situations and possible worlds allow us to make precise theoretical statements regarding the computability of AI planning problems. It is further shown how knowledge representation by generalized diagrams can be applied to descriptive and dynamic epistemic computing. Applications to the consequence closure problem, comparisons and to new A.I. advances in cardinality for concepts, KR, and cognitive modeling is reviewed.    

Keywords: Cogntive Modelling, Descriptive Computing, Generalized Diagrams, AI Planning By Computation on Diagrams, Computational Epistemology, Computational Illusion, Logics for Cognition

Project_METAAI@CompuServe.com

Copyright © Photo reproduction for noncommercial use and  conference publications is permitted without payment of royalty provided the reference and copyright notice are included on the first page.

Affiliations Academia and Projectmetaai@cs.com
Last USA Appointment UCSB

1. Introduction

The interest of AI for the past twenty five years in concepts and theories of logic, computational linguistics, cognition, and vision was motivated by the urge to bridge the gap from logic, metaphysics, philosophy and linguistics to computational theories of AI and practical AI systems. For the present author such interests were in automatic programming with types and rules, and computational  logic, and at more recent times, directed towards AI reasoning(Nourani 84,88)  planning (Nourani 87,91,95b) and mathematical  logic Nourani(94b,96). The present paper is being written only to put forth the foundations for what might be called computational epistemology based on the papers the author wrote during the last decade for applications to AI.  We present what we refer to by  Descriptive  Computation applying knowledge representation on generalized diagrams, following our (Nourani, 94a,b,96). We define descriptive computation to be computing with G-diagrams for the model and techniques for defining models with G-diagrams form the syntax of a logical language. Thus the model is definable by G-diagrams with a specified function set. The analogous terminology in set theory refers to sets or topological structure definable in a simple way. Thus by descriptive computation we can address issues of knowledge representation, robot planning, and theorem proving. The latter computational issues are pursued for planning applications in (Nourani 91,95b). We present formulations of computations, possible world's, and situations by generalized diagrams and conclude with some technical results for such formulation which is of computational significance. Next, some formulations of symbolic knowledge representation is put forth. This author's interest is in knowledge representation and symbolic computation for the purpose and from the view point of computation, models, reasoning, and planning. Whereas (Diddy 90) is that of representing knowledge from data observed, and symbolic data analysis, but again, how the above areas of study are explored differs considerably.

The concepts common to both is that of possible worlds and epistemic states, applied to computation and AI by this author starting from 1986 and the subsequent publication of some of the ideas and further research in (Nourani 87,88,91).  The specific areas that I will address will be outlined with two goals in mind: to formulate symbolic computation on diagrams encoding possible worlds and epistemic states, and to shed light on areas that have relation to the new computing defined. A mathematical logic overview is presented by the author in (Nourani 87,91). Prolog representation of epistemic states and plans are presented in (Nourani 94). The original ideas in the paper have been advanced on single-page abstracts to AI and logic for near a decade since 1983. For the area we have since called Computational Epistemology to be brought to the attention of the general AI community the overview has been written during the Summer of 1997.

A comparison is made to Konolige’s deduction model and the consequence closure problem. We show how our computing and reasoning on G-diagrams are ways to define automatic models and get around the consequence closure problem by a possible worlds encoding. We further present descriptive computing as  a way to mathematically treat the concept cardinality problems.

KR and reducibility with G-diagrams for models are applicable to limited reasoning with introspection. Cognitive modeling is another area treated.  

2.  Android Ontology  a Robot's Touch 

Having been invited to read (Didday 90) in November of 1992, which as far as the direction of computing is concerned appears as an elegant approach to a difficult practical problem domain, statistical data analysis inspired by the writings of (Heidegger 62), this author was prompted to examine Heidegger's views for possible computing applications. The common point of interest in our research and that of (Didday 90) is symbolic knowledge representation. However, the research directions are two essentially orthogonal, but not contradicting, views to knowledge representation. What forms the basis for thoughts applied in (Didday 90) are issues raised by Hiedegger in 1935-36, starting with the notion of "What is a thing" as put forth in (Heidegger 63). My immediate reaction was to start off from such "first principles" too, not touching such difficult areas of logic and philosophy, and only give my views of what they could imply for my approaches to metamathematics of AI. However, since my techniques are intended for AI computations and reasoning, rather than knowledge representation from observations, as it is the case in (Didday 90), I thought Heidegger's definitions could be taken one step further, as put forth below. 

2.1 Computational Illusion 

A Vielleicht Vorhandenen object might be a computational illusion (Nourani 1999). Thus the robot sense is not always real. The important problem is to be able to define worlds minimally to have computable representations with mathematical logic thus the ability to make definitive statements. Heidegger's Die Frage nach dem Ding will prove to be a blessing in disguise. Could it have computing applications to things without.  

Heidegger had defined three sorts of things  

1- Things in the sense of being "within reach", des Vorhandenen.

2. Things which "unify" things of the first kind, or are reflections on, resolution and actions.

3. Things of kind 1 or 2 and also any kind of things which are not nothing.

To define a logic applicable to planning for robots reaching for objects,  the der Vielliecht Vorhandenen computational linguistics game is defined.  To start, let us explore Heidegger's views of the "des Vorhandenen", having to do with what object is within "reach" in a real sense.  In AI and computing applications notion of des Vorhandnen is not absolute. As an AI world develops the objects that have names in the world are at times des Vorhandnen and as defined by a principle of Parsimony only des Vorhandnen in an infinitary sense of logic (Nourani 84,91). The logical representation for reaching the object might be infinitary only. The phenomenological problem from the robot's stand point is to acquire a decidable descriptive computation for the problem domain. Thus what is intended to be reached can stay always out of reach in a practical sense, unless it is at least what I call der Vielliecht Vorhandenen (Nourani 94a,94b).  The computing issues is the artificial intelligence computation and representation of real objects. That is, we can make use of symbolic computation to be able to "get at" a real object. At times, however, only infinite computations could define real world objects. For example, there is a symbolic computation for an infinite ordinal, by an infinite sequence of successor operations on 0.

      Furthermore, by my proposed present notion of der Vielliecht Vorhandenen I do not intend the sense in which a robot cannot reach a particular object.  I intend that the language could have names for which the corresponding thing is not obvious in the AI world and there is incomplete information until at some point the world is defined enough that there is a thing corresponding to a name, or that at least there is a thing by comprehension, which only then becomes des Vorhandnen as the AI world is further defined or rearranged. These issues are examined in the computational context in the sections below.

For example, the der Vielleicht Vorhandenen game has a winning strategy if the world descriptions by G-diagrams defines the world enough to have a computation sequence to reach for an intended object. This implies there must be a decidable descriptive computation (Nourani 94,96) for the world applied. The immediate linguistics example of these concepts from natural languages is a German child's language in which to "vor" and "handenen" are some corresponding things in the child's language world and mind, but "vorhandenen" is not a thing in that child's world and only becomes a thing as the linguistics world is further defined for the child. 

"Fur das kind in Menschen bleibt die nacht die Naherin der Sterne." The same sort of problem arises when the robot tries to actually get at elementary objects, where the robot finds what is called a paradox in (Didday 90):  that elementary objects have to be defined by comprehension. Comprehension is a closure with respect to properties that are essential and cannot be dropped without loss to the enclosed. Since the paper in its theory that is presented in part here, does not restrict Heidegger's definition, it can be further developed for AI applications. I might suggest ways of incorporating the above for computing applications. The probelms with words, objects and symbols have been there since Quine(50’s). 

3. Diagrams and Objects

3.1 Representing AI Worlds 

Diagrams are the ''basic facts of a model'', i.e. the set of atomic and negated atomic sentences that are true in a model. Generalized diagrams are diagrams definable by a minimal set of functions such that everything else in the model's closure can be inferred, by a minimal set of terms defining the model. Thus providing a minimal characterization of models, and a minimal set of atomic sentences on which all other atomic sentences depend. However, since we cannot represent all aspects of a real world problem, we need to restrict the representation to only the relevant aspects of the real world we are interested in.  Let us call this subset of relevant real world aspects the AI world. Our primary focus will be the relations amongst KR, AI worlds, and the computability of models.  Truth is a notion that can have dynamic properties. Interpretation functions map language constructs (constants, function and predicate symbols) onto entities of the world, and determine the notion of truth for individuals, functions and relations in the domain. The real world is infinite as the AI worlds are sometimes. we have to be able to represent these ideas within computable formulations. We are at times confronted with a huge number of possible truth assignments. We usually have to cope in even finite AI worlds with an exponential number of possible truth assignments. Thus the questions: how to keep the models and  the KR problem tractable, such that the models could be computable and within our reach, are an important area  (Nourani 91,93a,93b, 94,96), (Lake 1996). 

3.2 Computable World Models

To prove Godel's completeness theorem, Henkin defined a model directly from the syntax of the given theory.  The reasoning enterprise requires more general techniques of model construction and extension, since it has to accommodate dynamically changing world descriptions and theories. The techniques in [Nourani 83,87,91] for model building as applied to the problem of AI reasoning allows us to build and extend models through diagrams. We apply generalized diagrams to define models with a minimal family of generalized Skolem functions. The minimal set of function symbols are those with which a model can be built inductively.  The models  are computable as proved by (Nourani 84,93a,95b). The G-diagram methods applied and further developed here, allows us to formulate AI world descriptions, theories, and models in a minimal computable manner. Thus models and proofs for AI problems can be characterized by models computable by a set of functions.

3.3 AI Model Diagrams 

An AI world consists of individuals, functions on them, and relations between them. These entities allow us to fix the semantics of a language for representing theories about AI worlds.  We take the usual model-theoretical way, and assign via an interpretation function individuals to constants, functions to function symbols and relations to predicate symbols.

Let us define a simple language L = <{tweety},{a},{bird}, predicate letters, and FOL>>.

A model may consist of 

{bird(tweety), ( pinguin(tweety) ( bird(tweety), bird(tweety) v 

( bird(tweety), ...}, others may consist of

{p(a), ( p(a) ( p(a), p(a) v p(x), p(a) v p(x) v p(y),...}.

         Because we can apply arbitrary interpretation functions for mapping language constructs into AI worlds, the number of models for a language is infinite. Although this makes perfect sense from a theoretical and logical point of view, from a practical point of view, this notion of model is too general for AI applications. For AI we want effective and computable models. Thus, it is useful to restrict the types of models that we define for real world applications. Primarily, we are interested in models with computable properties definable from a theory. 

3.4 Cognitive Modeling 

Cognitive modeling can be enhanced with diagrams since our G-diagram techniques imply automatic models from basic functions. A systematic methodology for Cognitive modeling can be considerably assisted by the G-diagram modeling . The area has been emphasized by (Cooper et.al. 96). So far as the issues with symbolic objects are concerned there is a correspondence to the approach with Generalized Diagrams that can be defined. In our earlier papers the method of Possible Worlds is captured by that of the definition of generalized nondeterministic diagrams. Further, the earlier notion of a set {T,F,X} in (Nourani 91) and diagrams with generalized Skolemization in a recent paper of this author (Nourani 93a,95b) handle arbitrary valued logic.

Such correspondence could be subject of forth coming papers. There are  various issues having to do with correspondence of symbolic objects and real world things to address. If we were to search for a model-theoretic (Nourani 91) view of these in view of a triple <L,|A|,A> for a proper language L, we could gain some insight to the approaches. The other components of the triple are the concept of a model A and its universe |A|, see for example (Kleene 67). 

The diagram of a structure is the set of atomic and negated atomic sentences that are true in that structure  The generalized diagram (G-diagram) (Nourani 87,91) is a diagram in which the elements of the structure are all represented by a minimal family of function symbols and  constants, such that it is sufficient to define the truth of formulae only for the terms generated by the minimal family of functions and constant symbols. Such assignment implicitly defines the diagram. This allows us to define a canonical model of a theory in terms of a minimal family of function symbols . Generalized diagrams are precisely what allow us to build models from the syntax of a theory, thus allow for symbolic computation of models and theories. As we pointed out in (Nourani 84) the notion of generalized diagram and our formulation of AI reasoning systems capture the possible worlds formulation in a concise and elegant manner. In a possible world approach one focuses on the "state of affairs" that are compatible with what one knows to be true. We have shown in the above papers how the approach with G-diagrams to possible worlds gives an implicit treatment to modalities. 

The correspondence of modalities to Possible Worlds and the containment of the possible worlds approach by the Generalized diagrams approach of this author implies that we can present a model-theoretic formulation of the concept of modal symbolic objects (Didday 90, Nourani 92,93b), objects with varying properties, with cross product of modes formed from various generalized diagrams corresponding to each mode. Also the notion of language L has some consequences as far as the model theory to be developed is concerned. Then all the notions for the various modes could be defined and perhaps open new views of computation on generalized diagrams allowing us to represent views of cognition and computation with modes of thought in artificial intelligence. 

4. Extensions and Models

In Nourani(84,91) we have shown how to characterize AI computations by model extensions that are defined by theories with nonmmonotonic (AI 80) dynamics.  This direction of research could apply to symbolic knowledge representation as well.  [5] defines the I-extension to symbolic objects by defining extensions to a mode. It then becomes possible to extend definitions, properties, and qualities of modal symbolic objects.  The applicability of the formulations in this area could be further pursued One point of observation is the definition of completeness: a symbolic object is said to be complete if and only if the properties that characterize its extension are exactly those whose conjunction defines the object.  In [3] we have shown by our approach to possibility theory that plausible beliefs are closed under finite conjunction, and that probabilistic belief does not have this finite conjunction property.  We also showed that our approach has the infinite conjunction property, i.e., beliefs are closed under infinite conjunction. We expect our mathematical approach to reasoning to have some relevance to defining I-extensions and their completeness properties. But this brief statement could take up a wonderful research project to live up to its expectations. The relation of our papers to the present notions are not within the scope of the present paper. Some preliminary concepts are put forth in the following sections to the direction of research.

5.  Situations and Possible Worlds

What the dynamic epistemic computing defines is not a situation logic in the Barwise sense (Barwsie 85a,85b). The situation and possible worlds concepts are the same Barwise. However, we define epistemics and computing on diagrams, with an explicit treatment for modalities. The treatment for modalities are similar to Hintikka’s Model Sets (Hintikka 63, Nourani 91).

5.1 Model Sets and Complete Worlds

A possible world may be thought of a as a set of circumstances that might be true in an actual world. The possible worlds analysis of knowledge began with the work of Hintikka through the notion of model set and (Kripke 63) through modal logic, in which rather than considering individual propositions, one focuses on the `state of affairs' that are compatible with what one knows to be true, rather than being regarded as possible, relative to a world believed to be true, rather than being absolute. For example, a world w might be a possible alternative relative to w', but not to w''.  Possible worlds consists of a certain completeness property: for any proposition p and world w, either p is true in w or not p is true in w. Note that this is exactly the information contained in a generalized diagram, as defined in the previous section.  Let W be the set of all worlds and p be a proposition. Let [p] be the set of worlds in which p is true. We call [p] the truth-set of P. Propositions with the same truth-set are considered identical. Thus there is a one-one correspondence between propositions and their truth sets. Boolean operations on propositions correspond to set-theoretic operations on sets of worlds. A proposition is true in a world if and only if the particular world is a member of that proposition. 

5.2 Epistemic States and Ordinal Dynamics

Generalized diagrams , possible worlds and their logic, model theory, and set theory ,  are applied to put forth a basis for quantifying epistemology and put forth a computability theory for epistemology.  There is , however a theoretical development in philosophical logic towards quantifying the dynamics of epistemics. This author has defined an artificial intelligence planning theory, with applications to robot planning,  which applies epistemic with automated deduction. Logics for cognition epistemics in a robot computing theory  logically corresponds to designing computing techniques to implemement the computational epistemic's dynamics. The robot computing theory we have defined in (Nourani 91) is an example of a computational epistemics theory for robot planning and it runs on generic ordinal coded diagrams for models.  Logics for Cognition epistemics. (Gardenfors 88) applies epistemics to knowledge in flux. 

Suppose we represent a robot's beliefs by a set of propositions, which are a set of subsets of W.  If the robot already believes a proposition p, then the new information does not affect its belief state. If it does not believe p, then the impact of new information on the robot's belief state has to be defined.  Spohn handles the revision problem through a partitioning of possible worlds. Each possible world is assigned an ordinal representing its degree of implausibility.

The higher the assigned ordinal the more implausible that world as an actual world. Let k be the function assigning ordinals to each world. Spohn calls this function an ordinal conditional function (OCF). The set of worlds w for which k(w) = 0 is the set of most plausible worlds. The robot believes that the real world is a member of k-1(0) and considers no world as plausible as any world in that set. The robot believes proposition p iff k-1(0) is a subset of p, i.e. iff p is true in all the most plausible worlds. The function k can be extended to propositions as follows, where p is a proposition, we let


k(p) = min{k(w)|w is in p}


The strength of belief in a proposition p is represented by the degree of implausibility of -p. The more implausible -p is, stronger the belief in p. Hence we may define Bf, the belief function, by  Bf(p) = k(-p).  If k(p) and k(-p) happened to be zero, then there is no degree of belief in either. In the present theory of belief revision, when the robot comes to believe a proposition p that it does not already believe, the result is a new ranking of the possible worlds. If a is the strength with which the new proposition p is believed, then the new ordinal conditional function, representing the robot's new belief state, is denoted by k[p,a]. k[p,a] is defined as follows:

       k[p,a](w) = k(w) - k(p), if w is in p

                 = a + k(w) -k(-p), if w is in -p

The papers show these are consistent definitions and solve well-known planning problems

A fundamental probelm in KR is inherent intractability to comply with KB with limited belief and knowledge. The G-diagram techniques are an alternate way to formally specify beliefs with deductive and limited yet fully introspective KB. The area is since been viewed by (Lakemeyer 96). The computability problems in KR are further treated by {Nourani 96.]
6. A Preview To Computational Epistemology

6.1 D.E. and P.E.

From a formal representation of epistemic states as presented by (Sphon 

86-88), the generalized diagram formulation of possible worlds, and the encoding of epistemic states by (Nourani 87,91) we have the following conclusions. That Probabilistic Epistemology (P.E.) corresponds to intuitive notions of subjective and objective probability. We also conclude that Deterministic Epistemology (D.E.) leads to truth values for propositions, and belief by some epistemic subject that a proposition is true, false, or neither: thus to the notion of "truth." In (Nournai 91) we have shown that the notion of truth or belief in deterministic epistemology is closed  under infinite conjunction, whereas this is not true of probabilistic epistemology.  

We define Deterministic Epistemology, D.E. to be logic and epistemics definable by a deterministic logic and model theory, i.e. the present day logic and model theory, allowing for infinitary logics. We further define Probabilistic Epistemology, P.E. to be a logic and epistemics defined by probabilities, as in known probabilistic logics. Probabilistic Epistemology corresponds to intuitive notions of subjective and objective probability. It might seem that the ranking of the worlds with ordinals and OCF approach corresponds to the rankings of the worlds in terms of their probability, with the most probable world having rank 0, the next most probable world rank one, and so on.  However, such an easy correspondence runs into difficulties. In Sphon's formulation, a proposition is believed just in case it is entailed by (i.e. a superset of) the set of worlds of rank zero. This implies that belief is closed under conjunction. For if the set of most plausible worlds entails each member of a finite set of propositions, then it also entails their conjunction.  Having defined D.E. and P.E. by the present paper, we state the following theorem.

Theorem 6.1 There is no reduction from D.E. to P.E.

Proof  The notion of "truth" or belief in deterministic epistemology is closed  under infinite conjunction, whereas this is not true of probabilistic epistemology.   It is a property of the countable fragment of infinitary logic LSYMBOL 119 \f "Symbol"1, SYMBOL 119 \f "Symbol" with which we have formulated reasoning in (Nourani 84,91). This is not true of probabilistic beliefs. There is neither always a conjunctive closure property for non-infinitary nor infinitary conjunctions for P.E.  [] 

What the theorem means is that epistemic computations defined by D.E. are not always reducible to those for P.E. in the computability theory sense. It is not a question of polynomial reducibility- it is reducibility at all. This is not obvious at all if you think about it.  It implies we have a stronger computability degree with deterministic epistemology, infinitary logic, model theory and set theory for computational epistemology.

Definition 6.1 Let M be a structure for a language L, call a subset X of M a generating set for M if no proper substructure of M contains X,i.e. if Mis the closure of X U {c(M): c is a constant symbol of L}. An assignment of constants to M is a pair <A,G>, where A is an infinite set of constant symbols in L and G: A --> M, such that  {G(a): a in A} is a set of generators for M. Interpreting a by g(a), every element of M is denoted by at least one closed term of L(A). For a fixed assignment  <A,G> of constants to M, the diagram of M, D<A,G>(M) is the set of basic (atomic and negated atomic) sentences of L(A) true in M. (Note that L(A) is L enriched with set A of constant symbols.) []

Definition 6.2 A G-diagram for a structure M is a diagram D<A,G>, such that the G in definition 5.1 has a proper definition by a specified function set. []

Remark: The specified functions above are those by which a standard model could be defined. Examples for such specified functions appear at set theory and foundations, e.g. Godel operations.

Theorem 6.2 G-diagrams for models can encode possible worlds. 

Proof. Sections 5.1 and definition 6.2.[]

Now let us examine the definition of situation and view it in the present formulation. A situation consists of a nonempty set D, the domain of the situation, and two mappings: g,h. g is a mapping of function letters into functions over the domain as in standard model theory. h maps each predicate letter, pn, to a function from Dn to a subset of {t,f}, to determine the truth value of atomic formulas as defined below  The logic has four truth values: the set of subsets of {t,f}.{{t},{f},{t,f},0}. the latter two corresponding to inconsistency, and lack of knowledge of whether it is true or false.

Due to the above truth values the number of situations exceeds the number of possible worlds. The possible worlds being those situations with no missing information and no contradictions. From the above definitions the mapping of terms and predicate models extend as in standard model theory. Next, a compatible set of situations is a set of situations with the same domain and the same mapping of function letters to functions In other worlds, the situations in a compatible set of situations differ only on the truth conditions they assign to predicate letters.

The dynamics of epistemic states as formulated by generalized diagrams is exactly what addresses the compatibility of situations. How an algebra and model theory for epistemic states is to be defined by generalized diagram of possible worlds, is exactly what (Nourani 87,91) leads us to. To decide compatibility of two situations we compare their generalized diagrams. Thus we have the following Theorem.

Theorem  6.3 Two situations are compatible iff their corresponding generalized diagrams are compatible with respect to the Boolean structure of the set to which formulas are mapped (by the function h above, defining situations).

Proof  The G-diagrams, definition 5.3, encode possible worlds and since we can define a one-one correspondence between possible worlds and truth sets for situations [1,2,3], compatibility is definable by the G-diagrams.[] 

One of the implications of the above towards cognition and descriptive computing from the point of view of computer vision is the notion of der Vielliecht Vorhandene.  It is within the mathematical expressive power of our methods [1,2,3] with infinitary logic to form an infinite conjunction of beliefs with respect to an AI world. Thus we can represent an AI world and all the compatible generalized diagrams that can make "something" des Vorhandene form the model-theoretic point of view and descriptive computing. But the cognition dimension only relies on observable data and cannot form a conjunction of beliefs on every sample of data to conclude that the same "something" above is des Vorhandenen. This is a consequence of the above theorems and formulation. The analogy is that of proof theory, model theory and Godel's incompleteness theorem (Kleene 67, for example).

6.2 Cardinality and Concept Descriptions

We present what we refer to by  Descriptive Computation applying generalized diagrams, following our earlier papers Nourani [88,91]. We define descriptive computation to be computing with G-diagrams for the model and techniques for defining models with G-diagrams from the syntax of a logical language. G-diagrams are diagrams definable with a known function set. Thus the computing model is definable by G-diagrams with a function set. An example function set might be SYMBOL 83 \f "Symbol"1 Skolem functions. The analogous terminology in set theory refers to sets or topological structure definable in a simple way. Thus by descriptive computation we can address artificial intelligence planning and theorem proving, for example. The latter computational issues are pursued by the author in (Nourani 84). The logical representation for reaching the object might be infinitary only. We show in Nourani(94a,b, 96)  that the artificial intelligence problem from the robot's stand point is to acquire a decidable descriptive computation for the problem domain.

We had proved (Nourani 96) two specific theorems for descriptive computing on diagrams. A compatibility theorem applies descriptive computing to characterize situation compatibility. Further, a computational epistemic reducibility theorem is proved by the descriptive computing techniques on infinitary languages by the author in [94b]. A deterministic epistemics is defined and it is proved not reducible to known epistemics. We further define apply infinitary logic and cardinality  with transitive closure properties on sets and languages to define descriptive computable and admissible sets. We have defined a set to be Descriptive Computable iff it is definable by a G-diagram with computable functions and proved

(A) For descriptive computable sets the interesting transitive closures on sentences are  is definable from a G-diagram by recursion.

(B) For A an admissible computable set, A is descriptive computable.

Cardinality restrictions on concepts are important areas explored by AI. The concept description logics systems allow users to express local cardinality on particular  role filers. Global restrictions on the instances of a concept are difficult and not possible. Cordiality restrictions on concepts can be applied as an application domain description logic( Baader et.al. 96). The concept definitions with G-diagrams for localized KR 

and its relations to descriptive computable sets can be applied to concept cardinlaity restriction. By applying localized functions to define G-diagrams models for languages as defined by (Baader et.al. 96) can be generated with cardinality restrictions.  
7. Deduction Models  

It might be illuminating to compare the G-diagram techniques and computational epistemology to the (Konolige 1984) starting with the consequential closure problem for artificial intelligence and the possible worlds. What Konologie starts with is the infeasibility premise for consequential closure, i.e. the assumption that an agent knows all logical consequences of his beliefs. The deductive model is defined for situations where belief derivation is logically incomplete. The area had been voiced since (Fodor 75) and (Moore 80).  Konolige applies a model where beliefs are expressions in the agent’s “mind” and the agent reasons about them by manipulating syntactic objects.  When the process of belief derivation is logically incomplete, the deduction model does not have the property of the consequential closure. Konolige defines a saturated deduction model and claims a correspondence property: For every modal logic of belief based on Kripke possible world models, there exists a corresponding deduction model logic family with an equivalent saturated logic. In our papers(Nourani 84,87,91,95,96) and the present paper we show there is a minimal characterization of AI reasoning models with generic diagrams from which models can be defined for belief revision and automatically generated. The G-diagrams are defined for incomplete KR, modalities, and model set correspondence. What computational epistemology defines is a model theoretic technique whereby without the consequential closure property requirements on agents a model-theoretic completeness can be ascertained via nodeterministic diagrams.

Specific modal diagrams were defined for computational linguistics models by (Nourani 93,95).

From the practical view point the KR problems for first order logic formalisms as it is implied by  Konolige’s deductive view implies defining ways to apply links (Woods 75). In (Nou-Lieb 85) we showed how to define KR for automatic modeling with abstract objects for links in semantic nets (Schubert 76). Hence the deductive view might benefit from our computational applications.    

8.  Concluduing Thoughts 

The present paper defines some new directions for research in symbolic computation and artificial intelligence. It is also intended  to shed some light on the relations between this author's AI method of generalized diagrams , possible worlds and their logic and model theory, to the AI logical foundations  (Gen-Nils 87) for action and KR. The terms Descriptive Computing and Computational Epistemology were put forth as new keywords in the abstract to indicate possible new directions for artificial intelligence and computational logic. Descriptive Computing and its theory is a new area for artificial intelligence. Computability of AI planning problems by the formulation of situations and possible worlds and its theory is a new direction for research as well. There are obvious complexity theories implied by the reducibility theorem for D.E. and P.E. Dynamic Epistemic Computing (Nourani 94) is a consequence of the present approach. KR by generalized diagrams and its relation to the computing theories defined is yet another new area. There are many applications for the planning with diagram and automatic models. For example, to planning form second principles [Koehelr 96]. G-diagram revisions are efficient ways to accommodate plan revisions and second principle plans. Existing new directions are also presented by in the Dynamic Epistemic Computing paper where computing theories are presented for artificial intelligence epistemics.
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