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Hilbert's Grudnlagen der Geometrie  had applied Kantian thoughts where a major role is played in geometrical reasoning by continuity principles. Kant's synopsis of his critical premise is "Thus all human knowledge begins with intuition, goes form there to concepts, and ends with ideas." Kant's belief is that continuity could be represented by intuition and must therefore be regarded as an idea of pure reason as a device playing purely regulative role in the development of pure geometrical knowledge, i.e. the knowledge of the spatial manifold of sensory experience. Hilbert wanted to determine whether pure geometry can be developed without  appeal to principles concerning the continuum. Hilbert confirmed Kan't views to considerable  extent: appeals to the continuum are not necessary to our geometrical reasoning.
1. Introduction
This paper is towards a foundation for computing and KR with structural morphing with generalized diagrams and spatial models.  Geometric and spatial computing is carried out with arbitrary geometric structures, which are defined as multiagent visual objects. KR on generalized diagrams, abbreviated by G-diagram, is presented form [Nourani 1993,1988,1995] invented for AI planning and reasoning, formulating various notions of generalized and free diagrams. The specific spatial areas addressed are cognitive structure of spatial knowledge, languages of spatial relations spatial and temporal reasoning, navigation in spatial environments, incomplete or imprecise spatial knowledge, presentation of spatial information, virtual reality and robot navigation.  It shows that G-diagrams from the basis for minimal efficient knowledge representation, henceforth abbreviated by KR, paradigms. Areas touched upon are: foundational and formal. Essential characteristics of visual representations, diagram understanding and interpretation, properties of animated and changing diagrams, diagram specification techniques, diagrammatic knowledge representation and inference, visual reasoning with diagrammatic programming languages, modeling interaction with diagrams, sound logical reasoning with diagrams, combination of diagrammatic knowledge and domain knowledge. We also show the applicability of G-diagram method for KR to partial deduction and abduction from [Hoppe 1992], where we have defined adductive diagrams. Furthermore, we make a brief connection form [Hoppe 1992] to KR for proof abstraction methods in AI [Nourani 95bc], in the present paper, to show the applicability of the methods we are presenting with free proof trees.

     Generalized diagrams are used to build models with a minimal family of generalized Skolem functions.  The minimal set of function symbols is functions with which a model can be built inductively. The functions can correspond to objects defining shapes and depicting pictures. We cannot formalize the real world. AI Worlds are relevant descriptions for problem solving in the real world parts we want models for. G-diagrams can analogically model the semantics of a problem domain. The areas where we have applied G-diagrams include formal theories of DR[Nourani 1988,3,Nou-Hop 1994,Glasgow et.al. 1996], Computational models of DR [Nourani 1991,Nourani 1995,Nou-Hop 1994]. Application of DR in [Nourani 1993,1988,1991, 1995] 1994], human-machine interfacing, visual languages have appeared in our papers. Applications to multimedia computing are presented in [Nourani 1991d,1998a]. Section two starts with KR and relevant knowledge. Section 3 presents KR with model diagrams and presents spatial diagrammatic reasoning with diagram functions. Section 4 presents virtual trees and spatial models. Section 5 is a brief on Morph Gentzen and its applications with intelligent spatial model to spatial reasoning. Intelligent spatial information trees and commutation is presented with examples form orbit computation to stellar navigation. 
2. Computable AI World Models and Geometric Deduction

Morph Gentzen computing as presented in the paper applies a multiagent morph computing paradigm, which can encode geometric and structural KR. The paradigm applies to arbitrary and visual geometric and topological structures, applying the visual structures to automated deduction. The deduction becomes as flexible as agent computing and visual object selectors. Knowledge representation has two significant roles: to define a model for the AI world, and to provide a basis for reasoning techniques to get at implicit knowledge. An ordinary diagram is the set of atomic and negated atomic sentences that are true in a model. Generalized diagrams are diagrams definable by a minimal set of functions such that everything else in the model closure can be inferred, by a minimal set of terms defining the model. Thus providing a minimal characterization of models, and a minimal set of atomic sentences on which all other atomic sentences depend. We want to solve real world problems with spatial information trees.  Obviously for automating problem solving, we need to represent the real world. Since we cannot represent all aspects of a real world problem, we need to restrict the representation to only the relevant aspects of the real world we are interested in.  Let us call this subset of relevant real world aspects the Relevant World for a problem. Our primary focus will be the relations amongst KR, AI worlds, and the computability of models. The real world is infinite as are AI worlds at times. We might be interested to figure out in which AI worlds a theory or a sentence will be valid. Furthermore, we might like to perform abstract inferences over equivalence classes of models with precomputation and inference. We have to be able to represent these ideas with computable functions. 

2. 1 KR and Relevant Worlds

To prove Godel's completeness theorem, Henkin defined a model directly from the syntax of the given theory. This structure is obtained by putting terms that are provably equal into equivalence classes, then defining a free structure on the equivalence classes. The reasoning enterprise requires more general techniques of model construction and extension, since it has to accommodate dynamically changing world descriptions and theories. The techniques in [Nourani 1993,1988,1991] for model building as applied to the problem of AI reasoning allows us to build and extend models through diagrams. This requires us to define the notion of generalized diagram.  The diagrams are used to build models with a minimal family of generalized Skolem functions.  The minimal sets of function symbols are those with which a model can be built inductively.  We apply initial models since they are unique op to isomorphism and computable [Nourani 1980]. The G-diagram methods applied and further developed here, allows us to formulate AI world descriptions, theories, and models in a minimal computable manner. It further allows us to view the world from only the relevant functions. Thus models and proofs for AI problems can be characterized by models computable by a set of functions.

       The usual Tarskian semantics allows us to use some symbols for denoting objects of the real world, to draw some inferences on those symbols and to obtain some statements that will then be true in the real world.  Clearly, this is the basis for the symbolic computation paradigm of AI. However, the real world is complex, complicated and infinite. Thus we need to restrict any representation, so that it becomes computationally feasible.  It is however possible, as we show by this paper and Nourani [Nourani 1991, 1994], t o define new symbolic computation paradigms for KR and AI reasoning based on G-diagrams, that have appealing computing properties.  Hence, we focus usually during modeling on some subparts of the real world. And what we don't know on a generalized diagram is defined in terms of generalized Skolem functions. 

2.2 Representing World Models by G-diagrams

Let us define a simple language L = <{tweedy},{a},{bird}, predicate letters, and FOL>. A model may consist of {bird(tweedy),  bird(tweedy), bird(tweedy) v - bird(tweedy), ...}.
 penguin(tweedy) 
others may consist of {p(a),   p(a), p(a) v p(x), p(a) v p(x) v p(y),...}. For AI we want models that could be computed effectively and efficiently. Thus, it is useful to restrict the types of models that we define for real world applications. Primarily, we are interested in models with computable properties definable from the theory. 
p(a) 
2.3 KR on Diagrams and Partial Deductions

Proofs can be abstracted by generalizing away from constants in the proof. Thus, such a generalized proof can be defined by a whole class of minimal diagrams.  This process is usually realized via partial deduction, which can be regarded as the proof-theoretical way of abducing diagrams whose literals are necessary conditions for the proof. Under certain restrictions partial deduction can be transformed into abduction [Hoppe 1992].  We want to present a formal relation between partial deduction and abduction from a model-theoretical point of view. However, it was not clear how PD can be given a model-theoretical semantics and how knowledge is to be represented to a proof system.  This is one reason why the formulation of nonmonotonic reasoning with G-diagrams presented by [Nourani 1991, 1993,1995] could be applicable here. Let us now view the deductive methods.  The proof-theoretic example is SLDNF-resolution, which is a well-known deductive mechanism (Remark: This makes it easier for us to link diagrams to PD and Abductive Reasoning). A SLDNF-proof can be considered as the unfolding of an AND/OR-tree, which is rooted in the formula to be proven, whose branches are determined by formulas of the theory, and whose leaves are determined by atomic formulas which are true in an AI world.

In the present approach, as we shall further define, leaves could be free Skolemized trees. By a free Skolemized tree we intend a term made of constant symbols and Skolem function terms. Like models and diagrams, which where generalized above in different ways, we can generalize the notion of a proof. By dropping the assumption that proof-tree leaves get instantiated with atomic formulas, we get a more general notion of a proof, which is usually called "partial deduction'' [9]. The proof methods are driven form knowledge represented on G-diagrams. 

Partial deduction usually computes from a formula and a theory an existential quantified diagram. In the present paper we also instantiate proof tree leaves with free Skolemized trees[Fik-Nils 1971], where free trees are substituted for the leaves. In the present approach, as we shall further define, leaves could be free Skolemised trees. By a free Skolemised tree we intend a term made of constant symbols and Skolem functions terms. By dropping the assumption that proof-tree leaves get instantiated with atomic formulas, we get a more general notion of a proof applicable to arbitrary virtual trees with spatial information. The mathematical formalization that allows us to apply the method of free proof trees is based on [Nourani 1995b,c] and is further developed and applied to AI here.

3. Generalized Diagrams and Relevant Worlds

3.1 Generalized Diagrams

Generalized diagram is a technique to present models for arbitrary worlds defined with geometric shapes and structures with specific functions. To point out the use of the generalized method of diagrams we present a brief view of the problem of planning from [Nourani 1995] within the present formulation. The diagram of a structure in the standard model-theoretic sense is the set of atomic and negated atomic sentences that are true in the structure.  The generalized diagram (G-diagram) [Nourani 1991, 1995] is a diagram in which the elements of the structure are all represented by a minimal specified set of function symbols and constants. Thus it is sufficient to define the truth of formulas only for the terms generated by the minimal family of functions and constant symbols. Such assignment implicitly defines the diagram. This allows us to define a canonical model of a theory in terms of a minimal family function symbols. By definition a diagram is a set of atomic and negated atomic sentences, and can thus be considered as a basis for defining a model, provided we could by algebraic extension, define the truth-value of arbitrary formulas instantiated with arbitrary terms. Thus all compound sentences build out of atomic sentences then could be assigned a truth-value, handing over a model. As an example considers the primitive first order language (FOL).

L = {c},{f(X)},{p(X),q(X)} 

Let us apply Prolog notation convention for constants and variables) and the simple theory {for all X: p(X)  q(X),p(c)}, and indicate what is meant by the various notions.

[model] = {p(c),q(c),q(f(c)),q(f(f(c))),...},{p(c) &q(c),

                 p(c) & p(X), p(c) &p(f(X)), ...}, {p(c) v p(X), p(c) v  p(f(X)), p(c)  p(c)...} 
 
[diagram] = {p(c),q(c),p(c),q(f(c)),q(f(f(c))),...},...,q(X)}

i.e.  diagram = the set of atomic formulas of a model

Thus the diagram is [diagram]= {p(c),q(c),q(f(c)),q(f(f(c))), ...,q(X)}

There are various notions of diagram from Nourani's earlier papers (see references) that are applied in the present paper are presented here such that we can apply them. The term generalized diagram in this and other papers of first author referenced refers to diagrams that are instantiated with generalized Skolem functions. The generalized Skolem functions were defined in [Nourani1988,1995] as those with which initial models are defined inductively. Based on the above, we can define generalized diagrams. The term generalized is applied to indicate that such diagrams are defined by algebraic extension from basic terms and constants of a language to fully define diagrams making use of only a minimal set of functions.

Generalized diagrams is [generalized diagram]= {p(c),q(c),p(f(t)),q(f(t))} for t defined by induction, as {t0=c , and tn= {f(t(n-1))} for n>0. It is thus not necessary to redefine all f(X)'s since they are instantiated. Nondeterministic diagrams are those in which some formulas are assigned an indeterminate symbol, neither true nor false, that can be arbitrarily assigned in due time. [nondeterministic diagram] = {p(c),q(c),p(f(t)),q(f(c)),q(f(f(c))),I_q(f(s)))}, t is as defined by induction before and I_q(f(s)) = I_q for some indeterminate symbol I_q, for {s=t n, n>=2}. These G-diagrams are applicable for KR in planning with incomplete knowledge with backtracking [Nourani 1995]. Free Skolemized diagrams are diagrams in which instead of indeterminate symbols, there are free Skolem functions that could be universally quantified.

[Free_Skolemized-Diagram]= {p(c),q(c),p(f(t)),q(f(c)),q(f(f(c))),q_F.s(s)}, where t and s are as defined in the sections before. These G-diagrams are applicable to KR for planning with incomplete knowledge [Nourani 1995] and free proof trees[Nourani 1995,Nou-Hop 1994]. Plausible diagrams are diagrams with formulas that get their truth assignment based on a belief function that is defined from a degree of plausibility assigned to each formula on the diagrams. There were applied by [Nourani 1991] to represent plausible knowledge for planning applications.

3.2 Diagrams For World Computing

Diagrams can be regarded as a further ``minimization'' of models.  A  diagram is a set of atomic sentences and negations of those, which are true in a model.  We can think of diagrams as a way of abstracting from arbitrary complex compound formulas. The AI planning [Fik-Nils 1971] example [Nourani 1991, 1995] is reviewed here. Let us present a generalized diagram for the block world problem solver. The computation is on a world with cubes and a table. The special functions in the generalized diagram are similar to CONS's in terms of which all objects are represented. The blocks-world problem solver has one diagram function put :blocks,blocks  blocks x blocks, forming a set of ordered pairs indicating the relative block positions. There are three block names A,B, and C. For example, put(A,B) is defined to be {(A,B)}. 

top : blocks,blocks, lunar-surface {T,F} In the above table is the set of table configurations. For example, top(A,B,{(C,B),(B,A)} = T, where {(C,B),(B,A)} is a table configuration. Let us suppose we represent the table as a Cons'd list of ordered pairs such as (A,B) denoting that A was put on B.

Thus {A,(B,C)} is a possible table configuration in which A and B are free, but B is on C. Such table configuration is obtained by put(B,C,(A,B,C)). The diagram has to assign truth values to top(x,y,z), where x, any y are block names, and z is a table configuration. Let LS be the initial lunar-surface configuration {A,B,C}. For example, one can define the G-diagram for the blocks-world by top(x,y,z) = T,

                    if z = put(x,y,LS)

                   or z= put(x,w,put(w,y,LS));

                         = F, otherwise.

where x,y,w are variables assigned from {A,B,C} and z is a variable representing table configurations.)

When a revision to the block definitions occurs a new canonical model canonical model of the world can be constructed directly from the diagram.

3.3 Generalized Free Skolem Diagrams 

Such diagrams are defined by assigning truth values to predicates with known truth values at each stage and generalized Skolem functions [Nourani1988, 1991, 1995] to represent those predicates whose truth values are not known. Thus we define diagrams in which predicates are replace by their corresponding Skolem functions. For example in a blocks world example of AI, the entry in the diagram function for top(A,B) predicate is replaced by a Skolem function F_top(A,B). We refer to such diagrams as GF-Diagrams. The example from the model of sections above is as follows.

[Free-Skolemized-Diagram] = {p(c),q(c),p(f(t)),q(f(c)),q(f(f(c))),q_F.s(s)}, where t and s are as defined in the sections before. In the present paper we devise new methods of achieving nondeterminism by proposing what we shall refer to as Free Skolemized Diagrams [Fik-Nils 1971]. Note that the GF-diagrams, as in the approach by [Nourani 1995], also include all the information required to define possible worlds. Absolute formulas can be assigned plausibility ranking which represent their truth-value through the belief function limit ordinal. Relativised truth is captured by altering the truth limit ordinal, and by leaving plausibility degrees free by assigning generalized Skolem functions for the unknown predicates.

Note that we apply functions, e.g., diagram functions to select visual objects and carry out diagrammatic reasoning.

3.4 Predictive Diagrams and Models

Here we present the notion of an abductive diagram and apply it for KR to provide a model-theoretic characterization for PD and related proof trees. A predictive diagram for a theory T is a diagram D[M], where M is a model for T, and for any formula q in M, either the function f: q  {0,1} is defined, or there exists a formula p in D[M], such that T U {p} proves q; or that T proves q by minimal abduction. Hence it has a predictive function on incomplete knowledge. A generalized predictive diagram is a diagram with D[M]defined from  specific functions.  Abductive models could be minimally represented by a set of functions {f1,...,fn} that inductively define the model with a predictive diagram. The free trees [Nourani 1995] defined by the notion of provability implied by the definition, could consist of some extra Skolem functions {g1,...,gl},that appear at free trees. The f terms and g terms, tree congruences, and abductive diagrams then characterize partial deduction, e.g. deduction with  incomplete proof trees [Hoppe 1992, Nou-Hop 1993-95] with free trees.

4. Virtual Trees and Spatial Models

In the present paper we also instantiated proof tree leaves with free Skolemized trees. Thus virtual trees are substituted for the leaves. In the present approach, as we shall further define, leaves could be virtual trees. By a virtual tree we intend a term made of constant symbols and Skolem functions terms A plan is a sequence of operations in the universe that could result in terms that instantiated the truth of the goal formulas in the universe. That's what goes on as far as the algebra of the model is concerned. It is a new view of planning prompted by our method of planning with GF-diagrams and free Skolemized trees. It is a model-theoretic view. Proof-theoretically  a plan is the sequence of proof steps(Fiks-Nils 1971) that yields the proof for the goal formula. The proof theoretic view is what the usual AI literature presents. The planning process  at each stage can make use of GF-diagrams by taking the  free interpretation, as tree-rewrite computations as in (Nourani 1993), for example, of the possible proof trees that correspond to each goal satisfiability. The techniques we have applied are to make use of the free Skolemized proof trees in representing plans in terms of generalized Skolem functions. In planning with GF-diagrams that part of the plan that involves free Skolemized  trees is carried along with the proof tree for a plan goal. The virtual trees can carry spatial objects as indicated in section 5.1.

4.1 Keyed KBS and KR 

We can apply predictive diagram KR to compute queries and discover data knowledge from observed data and visual object images keyed with diagram functions. The figure depicts the computational aspects. 
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Model-based computing [Nourani 1995c,98b] which can be applied to automated data and knowledge engineering with keyed diagrams. Specific computations can be carried out with predictive diagrams [Nourani-Hoppe 1995]. 

4.3 Geometric Cognitive Grid and Photo-memory

Diagram grids can define a robot’s mind state for geometric cognition, planning, and learning the robot's mind The starting space applicable[Nourani 1991] project was meant for autonomous robots wandering at outer space. The designs in [Nourani 1991,1994,1995a] are ways for a robot to update its mind state based on what it encountered on its path. What the robot believes can be defined on a diagram grid. The degree to which a robot believes something is on the grid. It can get strengthened or weakened as a function of what the robot learns as progress is brought on. Robot's Mind State- The array grid entries are  pointing to things to remember and the degree the robot believes them. The entry 15 is an item robot believes the most. 

_________                                                   

|3, 4, 2,3, 11,15, 0,......                                            

|                                                            

|

|________________________  

Logically and theoretically the grid is minimally defined by the G-diagram functions. The gird model is a way to encode diagrammatic reasoning. The diagram functions select objects, depicted as balloons. The objects are visual designating physical shapes and spatial diagrams reasoned  with.   

5. Morph Gentzen

MIM- The IM Morphed Computing Logic for computing for multimedia are new projects with important computing applications since [Nourani 1998a,96a]. The basic principles are a mathematical logic where a Gentzen[Getnzen 1943] or natural deduction [Prawitz] systems are defined by taking arbitrary structures and multimedia objects coded by diagram functions. Multimedia objects are viewed as syntactic objects defined by functions, to which the deductive system is applied. Thus we define a syntactic morphing to be a technique by which multimedia objects and hybrid pictures are homomorphically mapped via their defining functions to a new hybrid picture. Functorial topological structures can be defined without difficulty. The deduction rules are a Gentzen system augmented by Morphing, and Trans-morphing. The logical language has function names for hybrid pictures. The MIM Morph Rule - An object defined by the functional n-tuple <f1,...,fn> can be Morphed to an object defined by the functional n-tuple <h(f1),...,h(fn)>, provided h is a homomrphism of abstract signature structures[Nourani 93c]. The MIM TransMorph Rules- A set of rules whereby combining hybrid pictures p1,...,pn defines an Event {p1,p2,...,pn} with a consequent hybrid picture p. Thus the combination is an impetus event. By trans-morphing hybrid picture's corresponding functions a new hybrid picture is deduced. The techniques can be applied to arbitrary topological structures. The languages and MIM rules are applied to algebraic structures. The deductive theory is a Gentzen system in which hybrid pictures are named by parameterized functions; augmented by the MIM morph and transmorph rules. The Model theory is defined from Intelligent syntax languages[96a]. A computational logic for intelligent languages is presented in brief with a soundness and completeness theorem in [96a]. The idea is to do it at abstract models syntax trees without specifics for the shapes and topologies applied. We start with L and further on might apply well-behaved infinitary languages. A soundness and completeness theorem has been put forth [Nourani 1998a] stating the Soundness and Completeness: 
1,
Theorem [Nourani 1997] Morph Gentzen Logic is sound and complete. 

5.1 Intelligent Trees and Spatial KR

The visual field is represented by visual objects connected by agents carrying information

amongst objects about the field, and carried onto intelligent trees for computation. Arbitrary geometric structures as perceived and/or imagined,  can be defined and computed on. Intelligent trees compute the spatial field information with the diagram functions. The trees defined have function names corresponding to computing agents. The computing agent functions have a specified module defining their functionality. 

Figure 1- Geometric agents and objects


Agents are squares and objects the balloons. The dotted lines are message paths.

Agents can be applied to alter the visual sturcture, compose geomtries, and morph 

geometric shapes. The balloons are objects applied to compute field information with agents where all computation is expressed and carried on intelligent tree languages[Nourani 96a]. By an intelligent language we intend a language with syntactic constructs that allow function symbols and corresponding objects, such that the function symbols are implemented by computing agents. A set of function symbols in the language, referred to by AF, is the set modeled in the computing world by AI Agents with across and/or over board capability. 

5.1.1 Computing Agents 

The term "agent" has been recently applied to refer to constructs that enable computation on behalf of an activity. It also refers to computations that take place in an autonomous and continuous fashion, while considered a high-level activity, in the sense that its definition is software and hardware implementation, independent. For example, in mission planning [Fik-Nils 71, Gennesereth-Nilsson-87,Nourani-91b] or space exploration, an agent might be assigned by a designed flight system [Nourani-91a] to compute the next docking time and location, with a known orbiting spacecraft. Agents are in most cases informable, thus allowing message passing actions. Software agents are specific agents designed by a language that carry out specified tasks and define software functionality. Most agents defined by our examples are software agents. In the space examples there, of course, implied hardware functionality specified. The present paper and [CFKE 98] applies the new computing basis to design autonomous vision computing spacecrafts and multiagent multimedia planned vehicles.
5.1.2 Intelligent Syntax

By an intelligent language we intend a language with syntactic constructs that allow function symbols and corresponding objects, such that the function symbols are implemented by computing agents. Sentential logic is the standard formal language applied when defining basic models. The language L is a set of sentence symbol closed by finite application of negation and conjunction to sentence symbols. Once quantifier logical symbols are added to the language, the language of first order logic can be defined. A Model  for L is a structure with a set A . There are structures defined for L such that for each constant symbol in the language there corresponds a constant in A. For each function symbol in the language there is a function defined on A; and for each relation symbol in the language there is a relation defined on A. For the algebraic theories we are defining for intelligent tree computing in the forthcoming sections the language is defined from signatures as in the logical language is the language of many-sorted equational logic. The signature defines the language L by specifying the function symbols' arities. The model is a structure defined on a many-sorted algebra consisting of S-indexed sets for S a set of sorts. Thus the language L defined by the signature has designated function symbols called AF. The AF function symbols define signatures which have specific message paths defined for carrying context around an otherwise context free abstract syntax. A set of function symbols in the language, referred to by AF, is agents with nontrivial capability. The boards, message passing actions, and implementing agents are defined by syntactic constructs, with agents appearing as functions. An abstract language that is capable of specifying modules, agents, and their communications expresses the computation. Here we have to define how the syntactic trees involving functions from the AFS are to be represented by algebraic tree rewriting on trees.

We define a function symbol f to be an intelligent function iff f is  a member to the Agent Function Set.  This is a free form definition that allows us to define tree algebras for intelligent spatial information computing theories. When we have specific computational applications, we can be precise as to what other properties the AFS is to have. Spatial Intelligent Trees are trees carrying functions and agents with visual and/or basic spatial information [Nourani 96b] has put forth the basis for a sound and complete intelligent information tree computing which can be applied direct to spatial information trees.

5.2 Spatial Information and Morph Gentzen
Multiagent spatial vision techniques are introduced in the paper. The duality for our problem-solving paradigm[Nourani 91a,93c] is generalized to be symmetric by the present paper to formulate Double Vision Computing. The basic technique is that of viewing the world as many possible worlds with agents at each world that compliment one another in problem solving by cooperating. The author presented an asymmetric view of the application of this computing paradigm and the basic techniques were proposed for various AI systems [Nourani 91a]. The double vision computing paradigm with objects and agents might be depicted by the following figure. For computer vision[Winston 75], the duality has obvious anthropomorphic parallels. The object co-object pairs and agents solve problems on boards by cooperating agents. The cooperative problem solving paradigms have been applied ever since the AI methods put forth by Hays-Roth (1985). However, the multiagent multiboard techniques due to [Nourani 95a] (Figure 2)
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Figure 2 Multiagent Multiboard Spatial Vision 

The techniques to be presented are to be applied to mobile multimedia. Communication and computation by multimedia visual-object languages can be programmed with IM with a simple syntax. The techniques presented are to be applied for (a) Precomputed video-object composition and combination for spatial morph Gentzen computing with visual objects (b) High speed visual spacecraft navigation by multiagent multimedia.

5.3 The Spatial Muliagent Navigator

The autonomous space vehicles, e.g. Mars Rovers, are example areas where we have provided applications for spatial agent computing.. Space examples are areas  where there are specific terrains precomputed for missions. For such environments  Morph Getnzen Spatial Logic can be designed to carry out autonomous intelligent multimedia activities. Morph Gentzen logic is designed where a combinations  known terrain events vision sensed causes a specific autonomous activity by a Mars Rover in real-time. A basis to a new science and engineering technique to design general purpose or application specific multimedia chips based on the above is published at IV-98, Daimlerbenz, Stuttgart. The author states ventures to design specific applications.  NASA-JPL is developing technologies that enable microrovers to autonomously traverse many kilometers on the surface of Mars, perform scientist-directed experiments, and return relevant data back to Earth.  Present microrover technology has several limitations precluding more ambitious science-rich missions. Onboard machine intelligence provides capabilities for autonomous search and recognition of potentially interesting targets, as well as capabilities for sensor platform planning and utilization. Morph Gentzen terrain logic can be applied to enhance autonomous traversal and autonomous spatial multimedia search.  

5.4 Intelligent Spatial Trees and Stellar Orbits
The example enclosed depicts how intelligent object trees might be applied to compute  
a binary star orbit from the spatial intelligent information trees on some stars at the same

constellation. Circles are stars, the squares are spatial agents , and binary star pair is  

enclosed by a rectangle. The dotted lines are agent message passing paths.
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Figure 1   Binary star orbit computation on a spatial intelligent tree

6.0  Concluding Comments
Intelligent spatial information trees are presented with a sound computational basis. Morph Gentzen logic augments spatial information trees with a sound and complete visual logic. Generalized diagrams are shown to be an encoding for a minimal efficient KR  technique applied to spatial information computation, present relevant world models and KR computation. We have defined various notions of generalized diagrams for KR applications to AI from planning and reasoning to carrying out spatial computation with visual objects, spatial  proof systems to world revision problems. Morph Gentzen with spatial information trees and mutliagent multiboard computing is applied to spatial navigation and  previewed as a logic for multimedia and visual computing with diagrams. There are applications to new diagrammatic reasoning developments since our 1987 papers. Morph Gentzen has been applied to spatial computations for inter-galactic visual field in a "science fiction" article the author had be invited to write for a magazine[Nourani 1998c]. Data models for object recognition at Aerocosmic Snapshots are projects reported on abstracts to be presented at CSIT January 1999 conference where the Intelligent Multimedia paper is recorded. The purpose of their further use in automatic image recognition systems is offered, to which our paper might yet prove to be relevant.

References

[Nourani 83]Nourani, C.F. 1983, "Equational Intensity, Initial Models, and AI Reasoning, Technical Report, 1983, : A Conceptual  Overview, in Proc. Sixth European Conference in Artificial Intelligence, Pisa, Italy, September 1984, North- Holland.

[Nourani-98a] Nourani,C.F. "A Parallel Functional Modular Language With Agents and Distributed Objects," July 1998, Brief IFL Wkshp Parallel Functional Langauges, September 1998, London.

[Glasgow et.al.1996] Diagrammatic Reasoning, Conference Proceedings 1996

(Chandrasekaran, Glasgow et.al. editor).

[Hoppe, T. 92],Hoppe, Th. " On The Relationship Between Partial Deduction and Abductive Reasoning," Proc. 10th ECAI Conference, 154-158, August 1992, Vienna, Austria,John Wiley and Sons.

[Nourani 91] Nourani, C.F., “Planning and Plausible Reasoning in AI,” Proc. Scandinavian Conference in AI, May 1991, Roskilde, Denmark, 150-157,  IOS Press.

[Nourani, C.F. 95c], Nourani,C.F., “Free Proof Trees and Model-Theoretic Planning,”  AISB, Sheffield, April 1995.

[Fik-Nils 1971] Fikes, R.E. and N.J. Nilsson, "Strips: A New Approach to 

 the Application of Theorem Proving to Problem Solving," AI 2,, 1971, pp. 189-208.

[AIJ 1980], Artificial Intelligence 13, Special Issue on Non-monotonic  Logic, 1980.

[Gen-Nils 1987] Genesereth, M. and N.J. Nilsson Logical Foundations of  Artificial Intelligence, Morgan-Kaufmann, 1987.

[Nourani 94] Nourani, C.F. 1994 , Towards Computational Epistemology- A Forward, Summer Logic Colloquium, Clairemont-Ferrand, France, 1994.

[Nou-Hop 1993] Nourani, C.F. and T. Hoppe, "GF Diagrams, and Free Proof Trees,"  Technical Report, March 1993, Abstract Presented at the Berlin Logic Colloquium, May 1994.

Nourani,C.F.,1998d "MIM Logik," Summer Logic Colloquium, August 1998, Prague.

[Gentzen 1943] Gentzen, G, Beweisbarkeit und Unbewiesbarket von Anfangsfallen der trasnfininten Induktion in der reinen  Zahlentheorie, Math Ann 119, 140-161,1943.

[Prawitz]  Prawitz, D ,"Natural Deduction: A proof theoretic study.Stokhom, Almqvist and Wiksell.

Nourani,C.F.1998a," Intelligent Multimedia," 1996, Intelligence and Multimedia Applications - 1998. February 1998, Monash University,  Victoria - 3842, Australia. Poster Announcement.

Nouran,C.F.1999 Intelligent Multimedia- New Computing Techniques and Its Applications, February 28, 1997.      CSIT'99, Proceedings of 1st International Workshop on Computer Science and Information Technologies, January 18-22, 1999, Moscow, Russia. Ch. Freytag and V. Wolfengagen (Eds.):  MEPhI Publishing 1999, ISBN 5-7262-0263-5

Vorotnikovskiy per., 7, bld.4    Moscow 103006, Russia

 [Hays-Roth 85] Hays-Roth, B,"A Blackboard Architecture For Control, Artificial Intelligence,"26(3),1985,251-321.
[Nourani 95b] AII and Heterogeneous Software Design, May 10, 1995, MAAMAW'97, Eighth European Workshop on MODELLING AUTONOMOUS AGENTS IN A MULTI-AGENT WORLD May 1997, University of Karlskrona/Ronneby,  Dept of Computer Science and Business Administration Ronneby, SWEDEN.

[Nourani 93c] Nourani, C.F. Abstract Implementations By Computing Agents: A Conceptual Overview," Proc. SERF-93, November 1993, Orlando, FL.

[Winston 75] Winston, P.H. The Psychology of Computer Vision, New York, McGraw Hill, 1975, (edited by).
[Nourani 95a] Nourani,C.F."Double Vision Computing,"IAS-4, Intelligent Autonomous Systems, April 1995, Karlsruhe, Germany.

[Nourani 95b] Nourani,C.F.(1995b),"Multiagent Robot Supervision," ECML Learning Robots, Heraklion, April 1995.

[Gini and Gini(1983)] Gini, M and G. Gini, "Towards Automatic Recovery in Robot Programs," Proc. 8th IJCAI, Vol.2, 1983, pages 821-823, Karlsruhe, Germany.

[Nourani 96a] Nourani,C.F. 96a, “Slalom Tree Computing,” AI Communications, The European AI Journal, December 1996, IOS Press, Amsterdam.

[Nourani,C.F.  98b], Nourani, C.F. “Intelligent Trees, Thought Models, And Intelligent Discovery,” MODEL-BASED REASONING IN SCIENTIFIC DISCOVERY (MBR'98), Pavia, Italy, December 17-19, 1998.

[Nourani 98c] Nourani,C.F. 1998c, Creating Digital Art and Motion Pictures with Intelligent Multimedia, 

A chapter in  Intelligent Multimedia, Treeless Press, February 2000. www.treelesspress.com
69

