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Abstract A preliminary overview to context abstraction and meta-contextual logic with applications is presented. Abstract computational linguistics [1] with intelligent syntax, model theory and categories is presented in brief. Designated functions define agents, as in artificial intelligence agents, or represent languages with only abstract definition known at syntax. For example, a function Fi can be agent corresponding to a language Li. Li can in turn involve agent functions amongst its vocabulary. Thus context might be defined at Li. An agent Fi might be as abstract as a functor defining functions and context with respect to a set and a linguistics model. Generic diagrams for models are defined as yet a second order lift from context. The techniques to be presented have allowed us to define a computational linguistics and model theory for intelligent languages. Models for the languages are defined by the author's techniques. Meta-contextual logic is combined with Morph Gentzen, a new computing logic the author presented in 1997, towards a Virtual Reality design languages and their computing logic (see abstracts at http://www.logic.univie.ac.at at the author's name.)
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0. Introduction

A computational linguistics with intelligent syntax and model theory is defined by Nourani 1996a; 1996b. Intelligent functions can represent agent functions, as artificial intelligence agents, or represent languages with definitions known at syntax. Since the languages represented by the agent functions can have arbitrary grammars not known to the signatures defined amongst the agent set, nondeterministic syntax computing is definable by the present programming linguistics theory.

This area is to be explored in Nourani 1996b. Form and context are definable by viewing computational linguistics by agent function sets. An agent FI might be as abstract as Functors defining functions and context with respect to a set and a linguistics model. To address the issues raised, the role of context in KR and NL systems, particularly in the process of reasoning, is related to diagram functions defining relevant world knowledge for a particular context. The relevant world functions can transfer the axioms and relevant sentences for reasoning for a context. Further, by passing context around trees via intelligent syntax trees (section 3) the locality burden is lifted from the deductive viewpoint. A formal computable theory can be defined based on the functions defining computable models for a context and the functions carrying context around. For the VAS context foundations is it indeed possible to decrease the computational complexity of a formal system by means of introducing context? Context localizes relevant worlds, and specific computable functions define the world. Thus extraneous deductions are instant credits reducing complexity. The “what is context” question is reviewed in section 3.3. From section 4 on we explore relations between contexts. Decontextualization is possible and might be necessary to address structural deductions. It might further be implied by paraconsistent logics (Nourani 1999b). Section 3.3 defines meta-contextual reasoning and a brief view to defining inter-context relations. Virtual tree computing is presented as a partial evaluation technique. Morph Gentzen computing provides the basis for type inferencing with visual object computing and rapid prototyping.

1. Intelligent Languages
By an intelligent language we mean a language with syntactic constructs that allow function symbols and corresponding objects, such that the function symbols are implemented by computing agents in the sense defined by this author in Nourani 1996a. A set of function symbols in the language, referred to by Agent Function Set, is a set of function symbols modeled in the computing world by Agents. The objects, messages passing actions, and implementing agents are defined by syntactic constructs, with agents appearing as functions, expressed by an abstract language that is capable of specifying modules, agents, and their communications. We have to put this together with syntactic constructs that could run on the tree computing theories.

Sentential logic is the standard formal language applied when defining basic models. The language is a set of sentence symbols closed by the finite application of negation and conjunction to sentence symbols. Once quantifier logical symbols are added to the language, the language of first order logic can be defined. A Model is a structure with a set A. There are structures defined such that for each constant symbol in the language there corresponds a constant in A. For each function symbol in the language there is a function defined on A, and for each relation symbol in the language there is a relation defined on A. For the algebraic theories we are defining for intelligent tree computing in the forthcoming sections, the language is defined from signatures as in the logical language of many-sorted equational logic. The signature defines the language by specifying the function symbols' arities. The model is a structure defined on a many-sorted algebra consisting of S-indexed sets for S a set of sorts. By an intelligent language we mean a language with syntactic constructs that allow function symbols and corresponding objects, such that the function symbols are implemented by computing agents. A set of function symbols in the language, referred to by AF, is the set modeled in the computing world by AI Agents with across and/or over board capability. Thus the language defined by the signature has designated function symbols called AF. The AF function symbols define signatures which have specific message paths defined for carrying context around an otherwise context-free abstract syntax. A set of function symbols in the language, referred to by AF, are agents with nontrivial capability. The boards, message passing actions, and implementing agents are defined by syntactic constructs, with agents appearing as functions. The computation is expressed by an abstract language that is capable of specifying modules, agents, and their communications.

Since the function symbols appearing might be invented by an activated agent without being defined in advance, intelligent Syntax allows us to program with nondeterministic syntax. The parsing problems are quite challenging. Trees connect by message sequences and hence carry parsing sequences with them. Thus the present computational linguistics theory is a start to Programming with VAS and Nondeterministic Syntax.

1.1 Intelligent Context Free Parsing

We define intelligent context_free grammars as follows;

Definition 1.1 A language L is intelligent context-free, abbreviated by ICF, iff L is intelligent and there is a context-free grammar defining L.

A preliminary parsing theory might be defined once we observe the correspondence between String Functions and context. Let us define string intelligent functions.

Definition 1.2 A language is String Intelligent iff it is an intelligent

language and all agent functions in the language are string functions.

The following start to the ICF theory is reported in Nourani 1995b.

Theorem 1.3 String Intelligent languages are Context-Free ICF.

Proof Follows form definition 2.1 and abstract syntax on signature trees as presented at ADJ 1973. 

2. Functorial Linguistic Abstraction

2.1. Categorical Grammars
Defining a category for languages allows us to define lifts, for example, from context. The linguistics abstraction techniques proposed allows us to lift from context to structures for analogical reasoning and proofs with free proof trees (ADJ 1973). For example, the G-diagrams for models technique is applied at two levels for reasoning at meta-context. Models definable with G-diagrams allow free proof trees to be defined for meta-contextual reasoning with intelligent trees. The diagrams further define D<A,G> categorical abstractions are defined for lifting from diagrams to categories for definable models. A third application for G-diagrams is for encoding situations, thus abstracting from Possible Worlds Context.

Categorical grammar is as close as computational linguistics has come to what we might want to refer to as Linguistics Abstraction. The term categorical, however, is not quite in the same sense as categories in the present paper. There are recent techniques for structurally transforming abstract syntax by applying logical rules, for example functional composition and abstraction. They are called categorical grammars (ADJ 1975) and the Lambek calculus for grammars (Lambek 1959). These techniques have formed a basis for defining natural deduction-like rules for grammars and proof techniques for abstract syntax trees by Koenig (Lambek 1959). There are a number of references to the present author in the paper due to him having put forth the present area for computational logic to show where it has been thus far.

2.2. Functors And VAS Syntax
Intelligent functions can represent agent functions, as in artificial intelligence agents, or represent languages with only abstract definitions known at syntax. For example, a function Fi can be an agent corresponding to a language Li. Li can in turn involve agent functions amongst its vocabulary. Thus context might be defined at Li with it s string and splurge functions. An agent Fi might be as abstract as a functor defining functions and context with respect to a set and a linguistics model as we have defined in Nourani 1996b. Since the languages represented by the agent functions can have arbitrary grammars not known to the signatures defined amongst the agent set, nondeterministic syntax computing is definable by the present linguistics theory. This area is explored in Nourani 1996b. Form and context are definable by viewing computational linguistics by agent function sets.

2. 3 Models And Syntax

In Nourani (1996a; 1996c) we have presented computing with intelligent trees and objects, where intelligent tree rewriting as a formal algebraic and model-theoretic computing technique might be defined from the abstract syntax trees and language constructs. The generalized diagrams were defined by this author to encode the model-theoretic semantics of a language from its abstract syntax. We present language designs with linguistics constructs that make it easier to identify G-diagram models and to define automatic implementations from abstract syntax (Nourani 1996b; Koenig 1990). There is a theory in principle for building models from syntax for first order logic. However, the computing enterprise requires more general techniques of model construction and extension, since it has to dynamically accommodate changing world descriptions and theories. The models to be defined are for complex computing phenomena.

3. Agent Linguistics

The linguistics abstraction techniques proposed allow us to lift from context to structures for analogical reasoning and proofs with free proof trees (ADJ 1973). For example, the G-diagrams for models technique is applied at two levels for reasoning at meta-context. Models definable with G-diagrams allow free proof trees to be defined for meta-contextual reasoning with intelligent trees. The diagrams further define D<A,G> categorical abstractions are defined for lifting from diagrams to categories for definable models. A third application for G-diagrams is for encoding situations - thus abstracting from Possible Worlds Context. Categorical grammar is as close as computational linguistics has come to what we might want to refer to by Linguistics Abstraction. The term categorical, however, is not quite in the same sense as categories in the present paper. There are recent techniques for structurally transforming abstract syntax by applying logical rules, for example functional composition, and abstraction. They are called categorical grammars (ADJ 1975) and the Lambek calculus for grammars (Lambek 1959). These techniques have formed a basis for defining natural deduction like rules for grammars and proof techniques for abstract syntax trees by Koenig (1990). There are a number of references to the present author in the paper due to him having put forth the present area for computational logic only to show where it has been thus far.

4. Meta-Contextual Reasoning

4.1. What is Context
Is context an inherent characteristic of natural language that ultimately decides the formal power of natural language? 

What theorem 1.3, the ICF theorem, appears to imply in view of sections 2.1 and 2.2 is that the latter assertion is not really true. The abstract linguistics put forth by the present paper and Nourani (1996b) and Scheler (1997b) have surprising implications. An utterance rich with abstractions, metaphores and string intelligent functions, i.e., functions and functors transcending context, is definable by a context-free grammar. An important technical point is that the agents are represented by function names that appear on the free syntax trees of implementing trees (Nourani 1996b). The trees defined by the present approach have function names corresponding to computing agents. The computing agent functions have a specified module defining their functionality. The definitions are either applied at proof trees or syntax tree implementation time. Computing with intelligent trees [1], G-diagrams for their models, and D<A,G> categories are introduced in Nourani 1996c for meta-contextual reasoning.

Meta-contextual reasoning is defined by lifting from syntax and clausal theories to proof theory with G-diagrams for intelligent trees D<A,G> categories- categories fro models definable by G-diagrams. Proof abstraction and planning with free proof trees (Nourani 1991) are another technique for meta-contextual reasoning. Relations between contexts can be defined by what context-relevant functions are applied with respect to the context they correspond to and the context in which they appear. Intelligent signature functions transferring context around also define inter-context relations. A computer system can automatically infer the relation between some given set of contexts from the inter-context-relevant functions.

4.2. Intelligent Trees and Multimedia

Intelligent Trees and Intelligent Multimedia Models are defined as a basis for thought models and model-based computing (Nourani 1998c). A new computing area is defined by Artificial Intelligence principles for multimedia. We apply our recent Intelligent Language paradigm and intelligent visual computing paradigms to define the IM multiagent multimedia computing as a thought paradigm. Multimedia AI systems were proposed (Nourani1999a) with new computing techniques defined. Multimedia Objects, rules and multimedia programming techniques are presented via a new language called IM. Computing, Cognitive, epistemological, meta-mathematical, and philosophical aspects are treated and reviewed in brief. A symmetric problem solving paradigm was presented in the Double Vision Computing as a practical AI Gestalt cognitive model complement analogue to a Cartesian visual symmetry. The basic technique is that of viewing the world as many possible worlds with agents at each world that complement one another in problem solving by cooperating on multiboards. Multimedia computing has since been defined by our projects. Morphing is applied to model subconscience imaging activities by applying the Morph Gentzen computing logic as a way to model discovery and a basis for a mind computing model. The logic and the MIM Multimedia computing techniques have a computing logic counterpart (Nourani 1998d). The basic principles are a mathematical logic where a Gentzen (Gentzen 1943) or natural deduction system is defined by taking multimedia objects coded by diagram functions. Morph Gentzen rules are defined on hybrid-picture figures. For example, F1&F2 ==> F3, where Fi's are hyper-picture figures. Multimedia objects are viewed as syntactic objects defined by functions, to which the deductive system is applied. Thus we define syntactic morphing as a technique by which multimedia objects and hybrid pictures are homomorphically mapped via their defining functions to a new hybrid picture. For Kant, conscience operates in the dichotomy between thinking objects and the thought object. There are two components of knowledge: spontaneity and receptivity. In cognition, Kant’s spontaneity is not in the void. If acts of thought have objective bearing it is because they are filled with intuition of something that is given to the person, towards which the person is receptive. Whenever we know something through intuition, something is given us. Kant calls it “sensibility.” Kant's intuition is never anything but sensuous. Morph Gentzen is applied in our papers towards explicating Kant's illusion logics.
4.3. KR, D<A,G> Models, and Context

Defining a category from the generalized diagram below is a second order lift from context. 

Definition 4.1 Let M be a structure for a language L, call a subset X of M a generating set for M if no proper substructure of M contains X, i.e. if M is the closure of X U {c(M): c is a constant symbol of L}. An assignment of constants to M is a pair <A,G>, where A is an infinite set of constant symbols in L and G: A M, such that {G(a): a in A} is a set of generators for M. Interpreting a by g(a), every element of M is denoted by at least one closed term of L(A). For a fixed assignment <A,G> of constants to M, the diagram of M, D<A,G>(M) is the set of basic (atomic and negated atomic) sentences of L(A) true in M. (Note that L(A) is L enriched with set A of constant symbols.)

Definition 4.2 A G-diagram for a structure M is a diagram D<A,G>,

such that the G in definition 4.1 has a proper definition by specified functions.

The G-diagram D<A,G> defines a linguistics abstraction from content from which a linguistics model might be defined for reasoning [3,5]. Abstract model theory as a second order lift is defined by a category D<A<G>. The D<A,G> category is the category for models definable form D<A,G>. A preliminary functorial model theory is defined for D<A,G> in Nourani (1996c).
4.3.1. KR and Relevant Knowledge
Knowledge representation has two significant roles: to define a model for the AI world, and to provide a basis for reasoning techniques to get at implicit knowledge. An ordinary diagram is the set of atomic and negated atomic sentences that are true in a model. Generalized diagrams are diagrams definable by a minimal set of functions such that everything else in the model’s closure can be inferred by a minimal set of terms defining the model. This thus provides a minimal characterization of models, and a minimal set of atomic sentences on which all other atomic sentences depend. Our primary focus will be the relations amongst KR, AI worlds, and the computability of models. To keep the models which need to be considered small and to keep the problem tractable, such that the models could be computable and within our reach, are important goals (Scheler 1997a; Nourani 1993c; Nourani/Hoppe 1994). We show that we can apply G-diagram functions to localize reasoning to the worlds affected by some functions relevant to a specific reasoning aspect.

4.3.2. Computable AI World Models

To prove Godel's completeness theorem, Henkin defined a model directly from the syntax of the given theory. This structure is obtained by putting terms that are provably equal into equivalence classes, and then defining a free structure on the equivalence classes. The reasoning enterprise requires more general techniques of model construction and extension, since it has to accommodate dynamically changing world descriptions and theories. The minimal set of function symbols is the functions set with which a model can inductively be defined. We focus our attention on such models, since they are computable (Scheler 1997; Nourani 1991). The G-diagram methods applied and further developed here, allow us to formulate AI world descriptions, theories, and models in a minimal computable manner. It further allows us to view the world from only the relevant functions. Thus models and proofs for AI problems can be characterized by models computable by a set of functions. Instead of using as the semantical basis for a theory, some purely mathematical structure like the Herbrand universe or Kripke structures, etc., we apply generalized diagrams to compute computational linguistics models. We are interested in a semantical foundation of our methods and approaches which is based on the real world, consisting of people, robots, languages, and  words, etc.

However, the real world is complex, complicated and infinite, and thus we need to restrict representations so that this becomes computationally feasible. It is possible, as we show in this paper and in Nourani (1991), Nourani/Hoppe (1994), to define new symbolic computation paradigms for KR and AI reasoning based on G-diagrams, that have appealing computing properties. To define worlds, only problem-relevant statements are used to formalize our theories, allowing us to draw plausible inferences. What we do not know on a generalized diagram is to be defined by generalized Skolem functions. We like to call such restrictions of the real world the Relevant World. Clearly, even such a restricted AI world may in some cases still be complex and infinite. However, by introducing such a restriction we have already made the number of possible interpretations and thus the semantics of a formalization considerably smaller.

4.4. Generalized Diagrams and Relevant Worlds

4.4.1. Generalized Diagrams
In order to point out the use of the generalized method of diagrams we present a brief view of the problem of planning form (Nourani 1984) within the present formulation. The diagram of a structure in the standard model-theoretic sense is the set of atomic and negated atomic sentences that are true in that structure (Nourani 1996c). The generalized diagram (G-diagram) (Nourani 1991; 1984) is a diagram in which the elements of the structure are all represented by a minimal family of function symbols and constants. Hence it is sufficient to define the truth of formulas only for the terms generated by the minimal family of functions and constant symbols. Such assignment implicitly defines the diagram. This allows us to define a canonical model of a theory in terms of a minimal family function symbols.

Models conform to a deductive closure of the axioms modelled and some rules of inference, depending on the theory. By definition, diagrams are a set of atomic and negated atomic sentences. Hence a diagram can be considered as a basis for a defining model, provided we can, by algebraic extension, define the truth value of arbitrary formulas instantiated with arbitrary terms. Thus all compound sentences built out of atomic sentences could then be assigned a truth value, handing over a model. This will be made clearer in the following subsections. The following examples would run throughout the paper. Consider the primitive first order language (FOL) 

L = {c},{f(X)},{p(X),q(X)} 

Let us apply Prolog notation convention for constants and variables and the simple theory {for all X: p(X) q(X),p(c)}, and indicate what is meant by the various notions.

[model] = {p(c),q(c),q(f(c)),q(f(f(c))),...},{p(c) &q(c),

                 p(c) & p(X), p(c) &p(f(X)), ...}, {p(c) v p(X), p(c) v  p(f(X)), p(c)  - p(c)...} 

[diagram] = {p(c),q(c),p(c),q(f(c)),q(f(f(c))),...},...,q(X)}

i.e. diagram = the set of atomic formulas of a model

Thus the diagram is [diagram]= {p(c),q(c),q(f(c)),q(f(f(c))), ..,q(X)}
There are various notions of diagram from Nourani's earlier papers (see references) which are applied in the present paper. The term generalized diagram in this and other papers of the first author referenced refers to diagrams that are instantiated with generalized Skolem functions. The generalized Skolem functions were defined in Nourani (1984; 1995) as those with which initial models are defined inductively. We can define generalized diagrams based on the above. The term “generalized” is applied to indicate that such diagrams are defined by algebraic extension from basic terms and constants of a language. The diagrams are completely defined from only a minimal function set. Generalized diagrams is [generalized diagram]= 

{p(c),q(c),p(f(t)),q(f(t))} for t defined by induction, as {t0=c , and tn={f(t(n-1))} for n>0

It is thus not necessary to redefine all f(X)'s since they are instantiated.

4.4.2. Diagrams for Representing Incomplete Knowledge

In this section we extend the notion of generalized diagram (G-diagram) to include plausibility and nondeterminism for the planning and representation of possible worlds. An extended notion of G-diagram can encode possible worlds to capture the “maximally complete” idea and can be used for model revision and reconstruction. By assigning a plausibility ranking to formulas, one can set a truth limit ordinal t as the truth threshold. These notions of diagram are applied by way of example to planning such that the notions of computations with diagrams and free proof trees can be illustrated. A nondeterministic diagram is a diagram with indeterminate symbols instead of truth values for certain formulas. For example, [nondeterministic diagram] = {p(c),q(c),p(f(t)),q(f(c)),q(f(f(c))),

I_q(f(s)))}, t is as defined by induction before and I_q(f(s)) = I_q for some indeterminate symbol I_q, for {s=t sub n, n>=2}. Such extensions to the usual notion of diagram in model theory are put forth in Genesereth (1987) and Nourani (1991). That approach was one method of avoiding the computational complexity and computability problems of having complete diagrams. Truth maintenance and model revision can all be done by a simple reassignment to the diagram. The canonical model of the world is defined directly from the diagram. There are specific computational linguistics model applications referred to in our papers.

4.5. Visual Virtual Trees

Linguistics knowledge representation and its relation to context abstraction are defined in brief. Scheler (1997a; 1997b) are further applications on specific visual linguistics. Nourani (e.g. Nourani 1999a) has put forth new visual computing techniques for intelligent multimedia context abstraction with linguistics components as indicated at section 4.2. In the present paper we also instantiate proof tree leaves with free Skolemized trees. Thus virtual trees, at times like intelligent trees, are substituted for the leaves. By a virtual tree we mean a term made up of constant symbols and named but not always prespecified Skolem function terms. In virtual planning with G-diagrams that part of the plan that involves free Skolemized trees is carried along with the proof tree for a plan goal.

We can apply predictive diagram KR to compute queries and discover data knowledge from observed data and visual object images keyed with diagram functions. Model-based computing (Nourani 1998c) can be applied to automated data and knowledge engineering with keyed diagrams. Specific computations can be carried out with predictive diagrams (Nourani 1995a). For cognition, planning, and learning the robot's mind, a diagram grid can define state. The starting space applicable project was meant for an autonomous robot’s space journeys. The designs in the author’s papers are ways for a robot to update its mind state based on what it encountered on its path. That which the robot believes can be defined on a diagram grid. The degree to which a robot believes something is on the grid. It can get strengthened or weakened as a function of what the robot learns as progress is brought on. Robot's Mind State: The array grid entries are pointing to things to remember and the degree the robot believes them. The grid model is a way to encode the world with the model diagram functions.
4.6. Morph Gentzen VR

The IM Morphed Computing Logic for computing for multimedia is a new project with important computing applications since the author’s Nourani 1996 papers. The basic principles are a mathematical logic where a (Gentzen 1943) or natural deduction (Prawitz 1972) system is defined by taking arbitrary structures and multimedia objects coded by diagram functions. Multimedia objects are viewed as syntactic objects defined by functions, to which the deductive system is applied. Thus we define a syntactic morphing to be a technique by which multimedia objects and hybrid pictures are holographically mapped via their defining functions to a new hybrid picture. Functorial topological structures can be defined without difficulty. The deduction rules are a Gentzen system augmented by Morphing, and Trans-morphing. The logical language has function names for hybrid pictures. 

The MIM Morph Rule: An object defined by the functional n-tuple <f1,...,fn> can be Morphed to an object defined by the functional n-tuple <h(f1),...,h(fn)>, provided h is a homomrphism of abstract signature structures. 

The MIM TransMorph Rules: A set of rules whereby the combining of hybrid pictures p1,...,pn defines an Event {p1,p2,...,pn} with a consequent hybrid picture p. Thus the combination is an impetus event. By trans-morphing a hybrid picture's corresponding functions, a new hybrid picture is deduced. The techniques can be applied to arbitrary topological structures.

The languages and MIM rules are applied to algebraic structures. The deductive theory is a Gentzen system in which hybrid pictures are named by parameterized functions; augmented by the MIM morph and transform rules. The Model theory is defined from Intelligent syntax languages in Nourani (1996a; 1995b). A computational logic for intelligent languages is presented in brief with a soundness and completeness theorem in Nourani (1998d). The idea is to do it at abstract models’ syntax trees without specifics for the shapes and topologies applied. We start with L(1,( and further on might apply well-behaved infinite languages. 

4.7. The Minimalists and Abstract Linguistics

Chomsky’s Minimalist Program (Chomsky 1996) jettisons syntactic entities and principles that are not absolutely necessary for linguistics description and explanation. The essence of Linguistics Abstraction defined by Nourani (1996b; 1995b) and the Visual Computational Linguistics is where by applying intelligent syntax, abstract models and language categories, it is possible to define principles for abstracting to what is absolutely necessary for description and explanation. The linguistics abstractions defined here allow us to lift from context to structures for analogical reasoning and reasoning at a meta-context. Further techniques for situation abstraction via diagrams are bases for defining Minimalist Principles. Further automatic models can be defined from syntax.

5. Concluding Comments

Linguistics Abstraction with Intelligent Syntax abstraction, Infinite Language Categories, abstract models, Situation Abstraction, and Meta-Contextual Reasoning are presented. We have shown how a formal logical explication of contexts with definable models might be obtained from the techniques presented. Thus the ability to define automated reasoning systems, which always transcend the context they are in, is embedded within the defined techniques. Functorial Linguistic Abstraction and abstract model theory with Infinite Language Categories have been applied to define lifting rules. A formal theory of context in which sentences are always considered as asserted within a context is definable by the present theory since there are computations defined on free intelligent syntax. However, to define the formal theory is a promising project in itself. Generalized diagrams are shown to be an encoding for a minimal efficient knowledge representation technique applied to define relevant world models and computational linguistics models (Nourani 1998b).
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